wyli 发布的文章

在解决控制任务时,RL呈现出样本效率低和模型表达能力有限的问题。为了提升RL的表达能力,一系列工作尝试把扩散模型与RL相结合。本篇文章主要介绍对于offline RL数据集,如何利用扩散模型解决RL问题,以及如何处理下游任务?

- 阅读剩余部分 -

行为基础模型(Behavior Foundation Model)是一种用于在动态环境中控制智能体行为的基础模型。BFMs通常在广泛的行为数据中进行训练,从而编码广泛的行为模式。这种特性使模型很容易泛化到不同的任务、上下文、或环境,证明了多样和自适应的行为生成能力。与VLA不同,BFMs直接控制智能体的行为,且主要为Humanoids设计的。

对于BFMs,首次提出于《Fast Adaptation with Behavioral Foundation Models》,其利用forward-backward表示框架构建行为基础模型,该框架不仅学习了基本特征,还学习了 successor features。接下来,对forward-backward表示和successor features进行详细的介绍。

- 阅读剩余部分 -

The image of the world around us, which we carry in our head, is just a model. Nobody in his head imagines all the world, government or country. He has only selected concepts, and relationships between them, and uses those to represent the real system. —Jay Wright Forrester
以上是系统动力学之父对mental modelworld model的描述。

- 阅读剩余部分 -