SayCan:机器人Affordances中的基础语言模型
大语言模拥有大量来自互联网文本语料的知识。然而,这些知识无法直接被具身智能体所使用。这是因为大语言模型不是建立在物理世界之上的,也无法观测它的生成对物理世界的影响。SayCan作者研究了为机器人从大语言模型中抽取知识,从而跟随指令的方法。其中,机器人拥有完成低级控制任务的技能库。具体来说,不仅利用LLMs解释指令,而且用于估计单个技能对完成高级别指令的可能性。若每个技能都有一个affordance函数,用于描述每个技能成功的概率,那么LLMs与affordance函数的相结合可估计每个技能完成指令成功的概率。其中,affordance函数使LLM意识到当前场景,也意识到机器人的能力边界。同时,这种方式可产生一个可解释的机器人完成指令执行的序列步骤。