论神经网络的光谱偏差
深度神经网络对自然数据泛化上的成功与经典的模型复杂性概念不一致,且实验表明可拟合任意随机数据。论文On the Spectral Bias of Neural Networks通过傅立叶分析,研究深度神经网络的表达性,发现深度神经网络倾向于学习低频函数,也即是函数全局的变化无局部浮动。该特性与过参数化网络优先学习简单模式而泛化性强的特点一致。这种现象被称为场域偏差,不仅仅表现在学习过程,也表现在模型的参数化。
深度神经网络对自然数据泛化上的成功与经典的模型复杂性概念不一致,且实验表明可拟合任意随机数据。论文On the Spectral Bias of Neural Networks通过傅立叶分析,研究深度神经网络的表达性,发现深度神经网络倾向于学习低频函数,也即是函数全局的变化无局部浮动。该特性与过参数化网络优先学习简单模式而泛化性强的特点一致。这种现象被称为场域偏差,不仅仅表现在学习过程,也表现在模型的参数化。
扩散模型的理论密度、采样调度器的推导、训练动力学、以及噪音级别参数化确保了模型在一个坚实的理论基础。然而,这种方式往往模糊了设计空间,即一个模型由紧的耦合包构成。EDM作者们关注了“有型”的对象和训练与采样中的算法,很少关注统计过程,从而在整个系统的设计空间中对元件的连接方式和自由度有了更好的洞见。此外,还有如下贡献:
由于空间、重量、以及电量的约束,大部分机器人系统无法配备高端GPUs。扩散策略在机器人控制的模仿学习领域实现了惊人的性能。然而,扩散策略的推理速度较慢,需要多步迭代才能生成动作。这种推理速度慢的约束限制了扩散策略的应用范围。为了保留扩散策略的性能且减少推理时间,Consistency Policy作者们通过对扩散策略的蒸馏,得到了一致性策略。