标签 Flow Matching 下的文章

扩散模型的性能虽优越,但是其限制了采样概率路径的空间。同时,扩散模型不仅拥有较长的训练时间,还需要通过蒸馏等方法提高采样效率。与之相比,连续正则化流CNFs能够建模任意的概率路径,但受限于无可扩展的CNF训练算法。为了解决CNFs模型训练的不稳定性,流匹配FM是一个基于回归固定条件概率路径向量场的Simulation-Free训练方法,为CNFs模型训练提供了等效梯度。该方法不仅拥有较好的样本质量,且训练与推理效率得到了很大的提升。

- 阅读剩余部分 -