FiLM:带有通用条件层的视觉推理
Feature-wise Linear Modulation(FiLM)是一个神经网络通用目的的调节方法,通过特征级别的仿射变换影响神经网络计算。实验结果,表明,FiLM层对视觉推理任务非常有效,例如:回答图片相关的问题。然而,这类问题对标准深度学习方法来说很困难。
Feature-wise Linear Modulation(FiLM)是一个神经网络通用目的的调节方法,通过特征级别的仿射变换影响神经网络计算。实验结果,表明,FiLM层对视觉推理任务非常有效,例如:回答图片相关的问题。然而,这类问题对标准深度学习方法来说很困难。
基于演示的策略学习是学习观测到动作映射的监督学习任务。然而,现实中机器人动作具有多峰分布、序列相关、以及高精度要求的特点,与其它监督学习任务相比具有很大的挑战。扩散策略是一个新形式的机器人视觉运动策略。与直接预测动作不同,它以视觉观测为条件推断动作-分数的梯度。这种方式学习到的策略继承了扩散模型许多关键特性:
在自然语言处理与计算机视觉领域,高容量模型基于开放的不可知的任务训练,可以吸收大规模数据集中呈现的知识,从而学习到通用能力。然后,该模型可以在特定的新任务实现少样本或零样本泛化的能力。这种通用能力在机器人领域更为重要。
足式运动是一个复杂的控制问题,它需要精确性和鲁棒性以应对真实世界的挑战。经典的方式是基于逆运动学的轨迹优化控制足式系统。这种层级的基于模型的方法很有吸引力,因为直观的成本函数、精确的规划、泛化性、以及数十年的研究成果积累。然而,模型的不匹配与假设的违反是错误产生的常见源头。另一方面,基于仿真的强化学习产生了空前的鲁棒性策略和恢复技能。尽管如此,所有的学习算法很难应对稀疏奖励的环境,在这样的环境中有效的足迹是稀疏的。