通用感知模块Perceiver与Fourier特征
感知模型的网络架构往往受限于特定模型,例如:卷积神经网络只能处理2D图片视觉信息。然而,现实世界往往需要处理多种模态,而只是把每个模型的特征concat到一起是不合理的。Perceiver是一个可以处理不同模态的网络架构,且该架构不具有特定的推断偏差,网络架构可见图1所示。同时,为了引入模态中的时空信息,利用Fourier特征增加位置信息。
感知模型的网络架构往往受限于特定模型,例如:卷积神经网络只能处理2D图片视觉信息。然而,现实世界往往需要处理多种模态,而只是把每个模型的特征concat到一起是不合理的。Perceiver是一个可以处理不同模态的网络架构,且该架构不具有特定的推断偏差,网络架构可见图1所示。同时,为了引入模态中的时空信息,利用Fourier特征增加位置信息。
学习一个任务的困难程度显著的受到数据表示方式的影响。根据相关文献,可知,数据生成因子的一个disentangled representation可适用于大量的任务与领域。其中,disentangled representation被定义为单个隐式单元对单个生成因子的变化较敏感,且对其它因子的变化保持相对不变。
大语言模型正在渗透人类生活各种方面,不仅影响人类的交流与工作,而且重塑每日娱乐生活方面。然而,LLMs运行在云环境中,需要大量的计算资源,这不仅导致大语言模型无法部署在移动设备上,而且对能量消耗与碳排放带来了巨大挑战。根据该观察,MobileLLM是一个小于1B参数量的模型,可部署在移动设备上,且与同规模的模型相比性能得到了提升,可见图1所示。
Alpaca是一个在7B参数量的LLaMA模型上利用52K指令跟随演示数据微调的模型。在单轮指令跟随数据上评估,Alpaca性能与OpenAI的text0davinci-003一致。
Vicuna是一个开源的13B参数量的chatbot。确切的说,该模型是通过在13B的LLaMA模型上利用来自ShareGPT.com的70K对话数据微调得到的,其工作流可见图1所示。