MAE:掩码自编码是可扩展的视觉学习器
深度学习在硬件的发展下,模型越做越大,但也需要越来越多的数据。然而,标注数据的成本是很高的。在自然语言处理领域,基于自回归和自编码无监督训练的方式,解决数据少的问题。与之相对的,计算机视觉领域的掩码自编码技术发展的很缓慢。MAE作者们对这种不同的原因进行了分析,结果如下:
- 语言与视觉的信息密度不同。语言是人类创造的,拥有高度的语义和信息密度。在训练模型预测句子中丢失单词时,该任务似乎已到模型学习复杂的语言理解。然而,图片来自于自然界,拥有很强的冗余性,例如:丢失的部分可被邻居部分再次恢复,甚至直接都能被识别。
- 自编码器的解码器映射隐式表示到输入,对于图片来说这种映射输出是低语义的,对语言来说这种映射输出是有丰富语义的。然而,BERT基于编码器就能学习到很丰富的语义信息,MAE需要编码器和解码器才能学习到丰富的语义。