ViT:视觉编码器
如图1所示,ViT整体架构很简单,由Transformer的Encoder构成,非双向。首先,图片分成$N$块patch,作为输入序列的token。然后,$N$token被打平,再输入线性映射层得到embedding。接下来,patch embedding与position embedding相加输入Encoder。与Bert的class token一样,也有一个可学习类别embedding的token $z_0^0$,其在Encoder对应输出$z_L^0$是整个图片的表示。最后,$z_L^0$输入到MLP网络预测类别,即在图片分类任务上预训练。