Consistency Models:一致性模型
扩散模型显著地提升了图片、音频、视频生成领域,这种模型依赖迭代的采样过程,从而导致生成速度很慢。为了解决生成慢的问题,一致性模型被提出。这种模型的核心思想是从相同轨迹上任何一点开始采样,最终的输出为一致的,可见图1所示。一致性模型有两种训练方式,分别是蒸馏预训练扩散模型和生成模型的直接训练。通过实验表明这两种方式在one-step和few-step生成上均实现了新SOTA的结果,即一致性模型不仅能够执行单步采样,且拥有迭代性采样的优势。
扩散模型显著地提升了图片、音频、视频生成领域,这种模型依赖迭代的采样过程,从而导致生成速度很慢。为了解决生成慢的问题,一致性模型被提出。这种模型的核心思想是从相同轨迹上任何一点开始采样,最终的输出为一致的,可见图1所示。一致性模型有两种训练方式,分别是蒸馏预训练扩散模型和生成模型的直接训练。通过实验表明这两种方式在one-step和few-step生成上均实现了新SOTA的结果,即一致性模型不仅能够执行单步采样,且拥有迭代性采样的优势。
学习一个任务的困难程度显著的受到数据表示方式的影响。根据相关文献,可知,数据生成因子的一个disentangled representation可适用于大量的任务与领域。其中,disentangled representation被定义为单个隐式单元对单个生成因子的变化较敏感,且对其它因子的变化保持相对不变。
生成式对抗网络虽然概念上直接,但是其背后的理论值得深究。简单来说,GAN定义了两个网络,分别是生成网络$G(z;\theta_g)$和判别网络$D(x;\theta_d)$。生成网络基于先验分布$p_z(z)$生成数据$x$的分布$p_g$。判别网络用于判别样本来自于训练数据$x$而不是$p_g$的概率。
扩散模型是一类概率生成模型,它通过注入噪声逐步破坏数据,然后学习其逆过程,以生成样本。目前,扩散模型主要有三种形式:去噪扩散概率模型[2,3] (Denoising Diffusion Probabilistic Models, 简称DDPMs)、基于分数的生成模型[4,5] (Score-Based Generative Models,简称SGMs)、基于随机微分方程估计分数的模型[6,7,8] (Stochastic Differential Equations,简称Score SDEs)。
扩散模型是一类概率生成模型,它通过注入噪声逐步破坏数据,然后学习其逆过程,以生成样本。目前,扩散模型主要有三种形式:去噪扩散概率模型[2,3] (Denoising Diffusion Probabilistic Models, 简称DDPMs)、基于分数的生成模型[4,5] (Score-Based Generative Models,简称SGMs)、随机微分方程[6,7,8] (Stochastic Differential Equations,简称Score SDEs)。